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An N-mode truncation of the equations governing the resonantly forced nonlinear
motions of a stretched string is studied. The external forcing is restricted to a plane,
and is harmonic with the frequency near a linear natural frequency of the string. The
method of averaging is used to investigate the weakly nonlinear dynamics. By using
the amplitude equations, which are a function of the damping and the frequency of
excitation, it is shown that to O(€), only the resonantly forced mode has non-zero
amplitude. Both planar (i.e. lying in the planar of forcing) and non-planar constant
solutions are studied and amplitude frequency curves are determined. For small
enough dampmg, solutions in the non-planar branch become unstable via a Hopf
bifurcation and give rise to a branch of periodic solutions in the amplitude—frequency
plane. This branch exhibits several period-doubling bifurcations, but does not
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2 A. K. Bajaj and J. M. Johnson

directly result in the formation of a chaotic attractor. At lower values of damping,
many other branches of periodic solutions exist. A series of bifurcations leads to the
formation of chaotic attractors in some of these solution branches. Various types of
interactions between the different solutions are found to result in many interesting
phenomena including, the formation of a homoclinic orbit and chaos quenching.
These results are discussed in the context of the Sil'nikov mechanism ncar a
homoclinic orbit for a saddle-focus. Results from the investigations of the averaged
system are interpreted for the truncated string system using the averaging theory
and the theory of integral manifolds. Numerical investigations with the single mode
truncation of the non-autonomous string system show that there is a good
correspondence even between chaotic solutions of the averaged system and those of
the original system.

1. Introduction

Nonlinear vibrations in stretched strings have been the subject of numerous research
investigations, the most recent ones being the works of Johnson & Bajaj (1989) and
Tufillaro (1989). Following the work of Miles (1984a), Johnson & Bajaj (1989)
studied the non-planar resonant motions of the string as a function of the excitation
frequency, and for sufficiently low damping, were able to predict amplitude-
modulated chaotic motions achieved via the process of torus doubling. These quasi-
periodic and chaotic motions necessarily arise due to modal interactions between the
identical, planar and non-planar, linear vibration modes even though only one
spatial mode is externally excited by the periodic forcing. Some of the results in
Johnson & Bajaj (1989), specifically, the torus-doubling process and the chaotic
amplitude-modulations, have recently been detected in an experiment (Molteno &
Tufillaro 1990) where a good qualitative agreement with many of the theoretical
results in Johnson & Bajaj (1989) is also reported.

When a string undergoes transverse vibrations, its length must also fluctuate,
causing changes in the string tension. The coupling between the transverse and the
longitudinal string oscillations is essentially a nonlinear phenomenon and it cannot
be captured by linear models. In a linear model, the assumptions of zero longitudinal
displacement and small transverse motions lead to the linear wave equation. If both
the longitudinal and the transverse displacements are considered small, the simplest
model of a stretched string is necessarily nonlinear. This coupling in the nonlinear
equations was studied by many authors (Miles 1965; Anand 1966, 1973; Narasimha
1969 ; Morse & Ingard 1968 ; Eller 1972) and is sufficient to predict, over a frequency
interval, out-of-plane or ballooning motions for the string even when the excitation
is restricted to a plane. A detailed description of the general problem of non-planar
string vibration and its analysis by the asymptotic technique of multiple timescales
can be found in Nayfeh & Mook (1979).

It was pointed out by Miles (1984 a-¢) and Macwal (1986, 1987) that the equations
describing the amplitude dynamics of the single-mode truncation of a string are
similar to those for the weakly nonlinear resonant motions of, a spherical pendulum
(Miles 19845), surface waves in a circular cylinder (Miles 1984 ¢; Funakoshi & Inoue
1988, 1990), transverse vibrations of an clastic beam (Maewal 1986) and those for an
axisymmetric shell (Maewal 1987). The amplitude equations for the different
physical systems can be arrived at by varying a single nonlincar paramcter and

Phil. Trans. R. Soc. Lond. A (1992)
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Resonant motion in stretched strings 3

possess identical symmetry properties. In every case, including that of the string,
there exist non-planar or mixed-mode solutions over some frequency interval. These
non-planar or whirling motions become unstable and bifurcate into quasi-periodic
motions via Hopf bifurcation (Iooss & Joseph 1989 ; Guckenheimer & Holmes 1983).
For small enough damping the limit cycle solutions of the amplitude equations can
even bifurcate to chaotic solutions (Guckenheimer & Holmes 1983). Some of the more
intricate phenomena observed include isolated solution branches, and Rossler and
Lorenz type chaotic attractors.

One of the limited number of mechanisms known to be responsible for chaotic
behaviour in systems of differential equations is associated with the existence of
orbits of infinite period linking one or more saddle points. A trajectory connecting
the unstable and stable manifolds of the same saddle point is called a homoclinic
orbit ; one that connects two different saddle points is called heteroclinic. As a control
parameter is increased there may, in certain circumstances, be homoclinic or
heteroclinic bifurcations that produce chaotic motions (Guckenheimer & Holmes
1983; Wiggins 1988). In the classic Lorenz system there is a saddle point with real
eigenvalues, and an associated symmetrical pair of homoclinic orbits. Bifurcations
from this orbit first leads to ‘preturbulence’ and then to a strange attractor. The
other possible case arising in three-dimensional systems corresponds to the
equilibrium point being a saddle-focus. Sil’'nikov (1970) showed that homoclinic
bifurcation in such a system could give rise to chaos. A very insightful and
comprehensive study of behaviour near homoclinic orbits in two-parameter systems
is the work of Glendinning & Sparrow (1984). More recent extensions to systems with
symmetry, and to systems in higher dimensions (n > 3) are given in Wiggins (1988)
with an excellent summary provided by Mees & Sparrow (1987).

The present work studies the non-planar resonant motions of the string in much
more detail than that available in Johnson & Bajaj (1989). The study begins with an
N-mode truncation of the partial differential equations and the resonant motions are
investigated using the method of averaging. The averaged equations are found to
possess very complicated dynamics including isolated and Hopf bifurcating limit
cycles branches, various types of chaotic attractors, and the phenomenon of
‘boundary crisis’ (Grebogi et al. 1983). A qualitative discussion of the stable and
unstable manifolds along with the computation of chaotic attractors is used to show
the occurrence of crisis whereby, at lower damping levels, the chaotic attractors
suddenly disappear and do not exist over various excitation frequency intervals.
Most of the results predicted by the averaging theory, including the ‘crisis’, are
verified for the truncated string equations. In addition to being comprehensive, the
present work includes a careful discussion of the connections between the solutions
of the averaged equations and those of the original equations. It is pointed out that
some aspects cannot be resolved by the standard results in averaging and the integral
manifold theory.

2. Equations of motion and averaging

The equations governing the weakly nonlinear, forced motions of a stretched
uniform string were derived by Narasimha (1968) and are given by

1
1
ytc+26w1yt_{c(2)+c?/2lf Iyx|2dx}yzz = % Y(I)C,t), (1)
0

Phil. Trans. R. Soc. Lond. A (1992)
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4 A. K. Bajaj and J. M. Johnson

where y = (y,2)" is the lateral displacement of the string at position x,0 < x < 1, and
at time ¢ In equation (1), w, is the fundamental frequency of transverse linear
vibration of the string; ¢ is the damping ratio for the fundamental mode, ¢, and ¢,
are, respectively, the transverse and the longitudinal wave speeds; [ is the length
of the string and m is its mass per unit length. Y is the external loading per unit
length of the string with the two components Y, and Y, representing the forces in the
y and z directions respectively. The subscripts x and ¢ signify, respectively, partial
differentiation with respect to the coordinate x and the time ¢. These equations were
derived, taking into account the longitudinal displacement of the string and its
coupling with the transverse motion, along with the change in tension due to the
large amplitude of motion. Only the lowest order nonlinear terms were then retained
in a successive approximation approach.

Letting

yat) =3 y,0)sin L Y t)= ¥ T(t)sin T, 2)
n—1 ! n—1 !
and using the orthogonality of the linear modes, equations (1) and (2) yield the modal
equations | ® {
y, +200,y 2 — v ey, =—7Y =1,2,.., :
k200, 5,1+ 1 S Ul = T ®)

where w, = nw, is the natural frequency of the nth linear mode, s = (¢,/c,)* is the
ratio of the two wave speeds, and /, = /7 is a normalized length.

We now assume that the external forcing is harmonic, its frequency is near the rth
natural frequency, w,, and it is restricted to, say the y plane. Then ¥, can be written

» el 2 B
Y, = B (30swt{ 6”}, (4)

ne

where the scaling has been chosen to simplify subsequent algebraic expressions and
d;; is the Kronecker delta. Note that e represents the amplitude of the harmonic
excitation and will be considered ‘small’. Also, only the rth spatial mode is excited
with the harmonic force. All the other modes, corresponding to n =1,2,...,r—1,
r+1, ..., are excited only through their nonlinear coupling with the »th mode. In fact,
even the out-of-plane component, 7,,, for the »th mode is excited only through its
nonlinear coupling with the in-plane component, 7,,.

An N mode truncation of the infinite set of ordinary differential equations (3) can
be studied using the asymptotic method of averaging (Hale 1963, 1969) for arbitrary
N. To simplify the coefficients of the resulting equations and to explicitly introduce
the ‘smallness’ of motion, the following scaled quantities are defined:

nt sV w sV[[ o \2
=V -, = 46 s - = 2 Y - ) &
e R Lo SRR 61 G R G

= (/0 é=1e/s)h

The resulting equations are:

" A 8 N]-
Z,+n’z, = €| 2ncosnr,{ " —20cz;z—2é)z”—4n22—,|z.|2z , n=1,2,...,N, (6
0 r " g
j=1

where d(+)/d7, = (*)". Equations (6) comprise a system of 2N coupled oscillators in

Phil. Trans. R. Soc. Lond. A (1992)
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Resonant motion tn stretched strings 5

which the planar component of the rth oscillator pair is weakly excited and all the
oscillators are weakly coupled through cubic nonlinear terms. The non-dimensional
parameters « and g represent, respectively, damping and detuning. The exact
resonance condition corresponds to £ = 0. Thus, f§ represents the deviation of the
excitation frequency, w, from the rth natural frequency, rw,.

The scalings defined imply that, in terms of the amplitude of external forcing, ¢,
the dlsplacements ¥V, are of 0(63) whereas the damping, §, and the frequency
detuning, (w?*—rw?), are each of 0(%). The weakly coupled oscillators in equations (6)
have a new small parameter, €, which itself is related to the amplitude of the external
excitation and will be used as the small parameter in the asymptotic analysis. In
terms of €, the displacements, damping and detuning (i.e. y,, § and (w? —rw?)) are of
0(&), 0(é), and O(é) respectively.

The weakly nonlinear system (6) is to be investigated using the method of
averaging. Let 2, = A, (1,) cosnt, + B, (1,) sin n,,

7, = —nA,(1,)sinnt, +nB, (1) cosnt,, n=1,2,...N, (7)

where A, and B, are 2-vectors. Substituting equations (7) into equations (6) gives
the system in ‘standard form’

/i;L = éﬁn(A>Ba 71’é)’ ‘BA;L = é‘on(/i’ B’ Tlé)i = 1’ 2’ ""N’ (8)
where f}, and f;,, are bounded 2x-periodic functions of 7,, and where, notationally, the
arguments A and B signify that the functions f;,, and f;, may depend on all the

vectors A,,...,Ay and B,,...,B,. The averaged equations corresponding to the
system (8) in standard form’ are then
A, =éfi,0(A,B), B, =¢éfy,0(A,B), n=12,..N, 9)

where f},,, and f,,,, are the mean values (averages) of the functions f;, and f,, defined

by 1 21

Sino = %f Jin(A,B,7,,0)d7,, i=1,2, n=1,2,...,N. (10)
0

The averaged equations (9) depend on the external parameters o and £ and provide
first-order approximations to the solutions of the original non-autonomous system
(8) and, therefore, the truncated string equations (8). The infinite-time theorems in
averaging theory and the theory of integral manifolds (Hale 1963, 1969) then relate
the steady-state solutions of the averaged system (9) to those of the original system
(8). Constant solutions of the averaged system correspond to 2n-periodic solutions of
the original system and therefore the coupled oscillators (6) also have 2r-periodic
solutions. Periodic solutions of the averaged system correspond to amplitude
modulated motions of the coupled oscillators. These relations will be discussed in
much more detail in §5.

After averaging, the equations for 4, and B, are explicitly given by

A;=é[ A ——ﬂB +nZJEB (% M IBnIZ)BnJr(An‘Bn)An], (11)

Jj=1

B;=é[{80} aB, +— ﬂA —WLJEA——IA J|?—|B,|»)A,— (A, B,)B }

J=1

n=1,2,...,N,
where £, = (A, A,)+ (B, B,) and (u'v) is the usual vector dot product.
Phil. Trans. R. Soc. Lond. A (1992)
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6 A. K. Bajaj and J. M. Johnson

In the truncated string system (6), the planar and the non-planar components for
each spatial mode (z,, and z,, respectively) have identical frequencies (1:1 internal
resonance). Furthermore, the linear natural frequencies for the various spatial modes
are all multiples of the lowest natural frequency. Thus, numerous internal resonances
(Nayfeh & Mook 1979) of the type p:(p+q), p.q = 1,2,3, ..., are present in the string
system. However, the response of the indirectly excited modes remains small in this
case because equations (6) do not possess the proper type of nonlinear coupling
terms. To see that only the mode in external resonance (which includes both the in-
plane component and its out-of-plane counterpart due to the 1:1 internal resonance)
may possess a large steady-state response, consider the rate of change d&, /d7, of £,.
By using the definition of £, and equations (11), it is easy to show that

1dE 8
e !B, ||. 12
an = e ({72, &

Clearly, for n # r and to O(€), the energy, K, exponentially decays to zero as 7, >
00. Thus, for the unforced modes, the only steady-state solution possible is the trivial
solution. Also note that, for n = r and to O(€), the energy, £,, is decoupled from all
other modes. Therefore the trajectories of the 4N-dimensional system defined by
equations (11) quickly collapse to the four-dimensional subspace associated with just
the resonantly forced mode. In other words, the long term dynamics of the averaged
equations governing the resonantly forced mode play a pivotal role in determining
the long term dynamics of the larger system. Letting p = (p,,p,)" = 4,, and q =
(91,9,)" = B,, the reduced equations (11), governing the dynamic behaviour of the
resonantly forced mode turn out to be

P = —ap,—(B—1.5E)q, +Mp,, ¢, = —aq,+(f—1.5E)p, +Mq,+1, } (13)
Py = —ap,—(F—1.5E)q,—Mp,, ¢, = —aq,+(B—1.5E)p,—Mq,,

where ' =K., M = p,q,—p,q,, and where a dot now represents derivative with
respect to the slow timescale 7 = ér,. These equations are independent of the mode
which is being resonantly forced. Therefore, without loss of generality, it can be
assumed that » = 1. Note that the mode number, », does appear explicitly in the
scalings defined in (5).

It is important to note here that the system (13) is quasi-hamiltonian. The
divergence of the system in the four-dimensional phase space,

2

Lo,
i-10p; 0g;
is —40o from which it follows that every trajectory must ultimately be confined to a
limiting subspace of dimension less than four. Furthermore, the system is invariant
to the transformation (p,,q,) > (—p,. —¢,). Thus, the equations (13) have pairwise
steady-state solutions unless the solution in question itself satisfies this symmetry.
As was mentioned in the Introduction, the amplitude equations (13) are a special
case of a one-parameter family of equations of the form

P = —apy— (B+34E)q, +BMp,, ¢, = —oaq,+(f+3AE)p,+BMq,+1, } (14)
Py = —opy—(B+3AE)q,—BMp,, ¢, = —aq,+(f+34E)p,—BMg,.

The string equations are obtained by letting 4 = —3 and B = 1. The various systems

Phil. Trans. R. Soc. Lond. A (1992)
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Resonant motion in stretched strings 7

studied by Miles (19846, ¢) and Macwal (1986, 1987) can be obtained by varying A
and B. Maewal’s beam equations correspond to —B/A = 1.71 whereas Miles’s
equations governing a spherical pendulum correspond to —B/4 =3. In both
Maewal’s work on axisymmetric shells and Miles’s work (also Funakoshi & Inoue
1988, 1990) on surface waves in a circular cylinder, the ratio —B/A can be varied by
changing some relevant physical parameters.

3. Constant solutions of the averaged equations

The constant solutions of the averaged equations (14) have been studied
extensively by Miles (1984 ¢). These results were specialized for the string problem in
Miles (1984 @) and in Johnson & Bajaj (1989). Some of the results are again repeated
here for their relevance and, for completeness of the discussion. The stability of the
constant solutions is determined using the eigenvalues of the jacobian matrix.
Additionally, some qualitative discussion of the stable and unstable manifolds of the
fixed points is undertaken as it will provide very useful information about the
dynamic behaviour, including the phenomenon of ‘crisis’.

The constant solutions (p,, q,, Py, ¢,)" of the equations (14) need to be determined
as a function of the detuning, g, and the damping, «. These equations can be solved
easily (Miles 1984c¢) to get the state variables p;,q,,7=1,2 in terms of the
combinations F = p?+¢i+pi+q5 and M = p,q,—p,q,- The functions M and &
themselves satisfy the following two sets of polynomials:

M =0, A2E® + 4BAE? + 4(f*+o2)E—4 = 0, (15)
and BAM? = —14(A +2B)E*— B(A + B)— (B +a?),

24(A + B)*E*+48(34 +B) (A + B)E?
+8{a?4+ (34 +2B) 2 E+{4B+164(a*+ %)} = 0. (16)

The solutions of equations (15) and (16) can be studied as a function of the
parameters # and a. Only those roots for which £ is real and positive, and M? > 0 are
physically meaningful.

Equations (15) and (16) implicitly define the frequency-response curves in the g
plane (for fixed a). Solutions of equations (15) require that M = 0, which is possible
only when p, = ¢, = 0. Clearly, such a solution remains in the plane of excitation and
will be, henceforth, called the planar branch. In general, solutions of equations (16)
will have M # 0 which implies that the p, and g, are non-zero, and such solutions will
be referred to as the non-planar branch. Notice that, because of symmetry, the pairs
(B, M) and (E, —M), simultaneously, satisfy equations (16). Thus, there are in fact
two symmetric pairs of non-planar branches given by (py, ¢y, Ps, ¢5) and (py,q,, — D,
— ).

Miles (1984 ¢) has discussed the solutions of (15) and (16) as a function of the
frequency detuning # and the damping «. This analysis includes a careful study of
turning points, number of meaningful solutions, maximum values as well as the
static and Hopf bifurcation sets in the af plane. Miles, additionally, obtained
approximations for these sets using asymptotic expansions in the damping
parameter, a. These results have been further elaborated and extended in Johnson
(1989). In the following paragraphs, we only present numerical results for the case of
the string system which corresponds to the nonlinear coefficients being 4 = —3.0,
B =1.0.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. Constant amplitude response curves for the string: (a) «
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Figure 3. Constant amplitude response curves for the string; o = 0.513.

(@) Response curves for the string

In figures 1-4, the response curves for the string are plotted for several
representative values of damping. The figures show the planar amplitude, 4, =
p¥+¢q2, and the non-planar amplitude, 4, = p2+¢Z, as a function of S for fixed a.

Analysis in Miles (1984 ¢) and Johnson (1989) shows that for large damping values
(e > 0.991), only the planar branch exists and that it is single valued for all #. Figure
1a is typical of the response curves of this type. The string, therefore, has a unique
steady-state periodic response at each frequency of excitation. This response remains
in the plane of excitation. For a < 0.991 the planar branch is multi-valued in the
interval (8,, B¢). Figure 1b is typical of the response curves of this type. Here again,
the motion of the string is confined to the plane of excitation except that in the
frequency interval (f,, fs) three steady-state solutions are possible. As « is decreased
the planar solution branch undergoes a pitchfork bifurcation and gives rise to two
symmetric non-planar solution branches.

The non-planar branch is known (Miles 1984 ¢; Johnson 1989) to exist provided
a < 0.687. In fact, there are two non-planar solution branches due to symmetry, but
from here forward they will be referred to collectively as the non-planar branch. For
large enough damping values (o > 0.477), the non-planar branch is single valued.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 4. Constant amplitude response curves for the string; a = 0.45.

Figures 2 and 3 are typical of the response curves of this type. For a < 0.477, the non-
planar branch is multi-valued in the interval (f,,f,). Figure 4 shows a typical
response curve of this type. It is clear from these curves that for some frequencies
stable non-planar solutions of the string coexist with planar solutions. In figures 14,
stable solutions are shown in solid lines, whereas unstable solutions are shown in
dashed lines. We now discuss the stability of the planar and the non-planar fixed
points.

Let the characteristic equation for the jacobian matrix of equations (13) around a
steady-state constant solution be

AN T A TN T A+, = 0, (17)

where J,, ¢ = 0, ...,4 depend on the solution and the parameters a and f. Sethna &
Bajaj (1978) showed that for fourth-order quasi-hamiltonian systems, there are two
ways in which a stable equilibrium point may become unstable as some system
parameter is varied. Either an eigenvalue must pass through the origin or a complex
conjugate pair of eigenvalues must pass through the imaginary axis with non-zero
imaginary parts. They further showed that the first type of instability occurs when

Jy = Det [9f/0x] = 0, (18)
and that the second type of instability occurs when
Ji(Jy 3= Jy) =Sy S5 = 0. (19)

In the response curves shown in the figures 1-4, both types of instabilities arise.
The first type of instability arises at the critical points, £;,j = 1, ..., 6. The points f,,
Pe and S, B, correspond to turning points in the planar and non-planar solution
branches, respectively. At points f,, and g there is a pitchfork type bifurcation from
planar solutions to non-planar solutions and the two solutions undergo an exchange
in sign of one real eigenvalue.

The second type of instability, defined by condition (19), (obtained using
Routh—Hurwitz criterion) is the well-known Hopf bifurcation. The non-planar fixed
point undergoes a Hopf bifurcation. These bifurcation points are labelled £, and f,,
in figures 3 and 4. The points £, and f,, only exist provided that the damping is
below a critical value (o =0.577 for the string problem). From the Hopf
bifurcation theorem (Iooss & Joseph 1989; Guckenheimer & Holmes 1983), it is
expected that for the averaged equations (13) a limit cycle arises near £, and f,,.
Figure 5 shows the Hopf bifurcation set in the af plane. It is clear from this figure
that £, and f,, coalesce as the damping « is increased.

The importance of the Hopf bifurcation theorem to the study of nonlinear systems
is difficult to overstate. Hopf bifurcations provide a means by which relatively
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Figure 5. Hopf bifurcation set in the af plane.

mundane constant solutions give rise to more complicated time dependent steady-
state solutions. This is important to the study of nonlinear dynamical systems
because there is currently no way of, a priori, knowing of the existence of complex
solutions in a particular system for a particular set of parameter values. Furthermore,
even if complex solutions are suspected, it is not known where in the phase space
these interesting solutions exist. The Hopf bifurcation theorem, where applicable,
provides insight into the parameter range in which interesting solutions can be found
and also indicates the location in the phase space of such limit cycle or periodic
solutions.

The study of the averaged equations, thus far, has shown that for large damping
values the only constant solutions that exist are in the plane of the external forcing.
The response is like that of Duffing’s equation near primary resonance (Nayfeh &
Mook 1979) with multiple solutions arising between the frequencies g, and g,.
Though the model includes out-of-plane motions, all the out-of-plane disturbances
decay exponentially to zero. Further reduction in damping destabilizes the upper
planar branch to out-of-plane disturbances, resulting in non-planar or whirling
motions of the string in the frequency interval (§,, f5). Now it is possible to generate
planar as well as non-planar steady-state periodic responses by simply adjusting the
initial conditions. In fact, it was shown in Johnson & Bajaj (1989) that the non-
planar branch itself develops multiple constant solutions as well as Hopf bifurcation
which lead to stable limit cycle solutions coexisting with planar and non-planar
constant solutions.

The following section discusses the stable and the unstable manifolds of the fixed
points as they play an important role in the global dynamical behaviour of the
nonlinear system.

(b) Stable and unstable manifolds of equilibrium points

The stable manifold of a fixed point is the set of all initial conditions such that the
solution of the differential equation started at these points leads asymptotically to
the fixed point as t - 4 co. The unstable manifold of a fixed point is similarly defined
for ¢t —oo. These stable and unstable manifolds of equilibrium points provide
important information about the transient behaviour of a dynamical system. The
manifolds of saddle-type equilibrium points determine the domains of attraction of
the stable steady-state solutions or attractors of the system. The dimension of the
stable manifold of an equilibrium point equals the number of eigenvalues of the
jacobian that are in the left-half plane. Furthermore, the stable manifold is tangent
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Figure 6. Planar flow field for the averaged system.

Figure 7. Flow field near Hopf bifurcation from non-planar solutions.

to the linear subspace generated by the stable eigenvectors of the fixed point. Similar
statements can be made concerning the unstable manifold. A complete discussion of
stable and unstable manifolds can be found in Wiggins (1988).

In the averaged equations being studied here, many equilibrium points arise as the
parameters o and g are varied. These solutions, furthermore, undergo stability
changes. Thus, there are several important manifolds to discuss. For ease of
discussion, it is convenient to begin with the case of large damping so that only the
planar constant solutions exist. In parameter regions where more than one
equilibrium point exists, they will be referred to as the lower, the middle and the
upper planar fixed point.

Consider the invariant manifolds associated with the middle planar fixed point.
Since this fixed point has one eigenvalue in the right-half plane, the unstable
manifold is one dimensional. As a consequence of the fact that the middle solution
branch terminates at both ends via saddle-node bifurcations (i.e. turning points), the
unstable manifold of the middle fixed point must lead to the upper fixed point in one
direction and the lower fixed point in the other. The stable manifold of the middle
planar fixed point forms a three-dimensional hyper-surface that, in a sense,
partitions the phase space. Solutions beginning on one side must remain on that side
for all time (both positive and negative times). Furthermore, all the initial conditions
on one side asymptotically lead to the same stable fixed point as ¢t— + co. Thus,
the stable manifold of the middle fixed point defines the domains of attraction of the
lower and upper planar fixed points. This can be more easily seen by considering the
flow field in the p, ¢, plane. Note that the (p, ¢,) sub-manifold itself is asymptotically
stable and is an invariant of the system. Figure 6 qualitatively shows a typical flow
field for a frequency, g, where only the three planar fixed points exist. As £ is
increased to S (the right planar turning point), the middle and the upper planar
fixed points coalesce. As £ is decreased to f, (the left planar turning point), the
middle and the lower planar fixed points coalesce.

The manifolds of the upper planar fixed point assume importance for values of
damping for which the fixed point is unstable (i.e. when the non-planar branch
exists). In this case, the stable and the unstable manifolds are very similar to those
of the middle planar fixed point. The stable manifold partitions the space into
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12 A. K. Bajaj and J. M. Johnson

symmetric domains of attraction for the two non-planar fixed points. The unstable
manifolds lead to the two non-planar fixed points (at least when the non-planar fixed
points are stable).

When the non-planar equilibrium points become unstable via a Hopf bifurcation,
the unstable manifolds of the upper planar constant solution no longer lead to the
non-planar fixed points, rather, they asymptotically approach the more interesting
non-planar solutions such as limit cycles. Figure 7 qualitatively shows the vector
field projected onto the p,q, plane. Since the stable manifold of the middle planar
constant solution separates the upper and the lower planar fixed points, the unstable
manifold of the upper planar fixed point cannot lead to the stable lower planar fixed
point.

The unstable manifold of the upper planar equilibrium point, in parameter regions
where the non-planar fixed points are unstable, is extremely important to the
investigation of non-constant solutions of the averaged equations (13). This unstable
manifold leads neither to a stable fixed point nor to infinity (the asymptotic solutions
set is bounded). Several authors have noted that chaotic attractors seem to be a
subset of the closure of the unstable manifold of a saddle-type fixed point (Grebogi
et al. 1983). This observation provides a very powerful and useful means of finding
initial conditions that lead to interesting solutions of the averaged equations (e.g.
limit cycles and chaotic attractors).

The following section makes use of the understanding gained here in an exhaustive
numerical investigation of the averaged equations (13). In particular, knowledge of
the existence of Hopf bifurcation in the non-planar branch, coupled with the
knowledge of the planar and non-planar constant solutions and the corresponding
invariant manifolds provides a solid base from which to study the averaged
equations (13) for more interesting steady-state behaviour such as limit cycles and
chaotic attractors.

4. Periodic and chaotic solutions of averaged equations

In this section the averaged equations (13) are studied for periodic and chaotic
solutions using numerical techniques. As is already shown by Johnson & Bajaj
(1989), the Hopf bifurcation discussed in the previous section gives rise to a stable
limit cycle. Apart from the Hopf branch, many other branches of periodic solutions
are discovered and investigated. These periodic solution branches exhibit many
interesting phenomena including saddle-node bifurcations, period-doubling bifurca-
tions and the formation of a homoclinic orbit. In some branches, a cascade of
period-doubling bifurcations results in the formation of a chaotic attractor. These
attractors are characterized using Poincaré sections, Lyapunov exponents, and the
concept of fractal dimension. The chaotic attractor grows quickly in size as damping
is reduced, so much so that it collides with its basin boundary and is destroyed
through a process termed ‘crisis’. As many of these results are well documented in
Johnson & Bajaj (1989) we present the results selectively, concentrating on the new
and much more interesting aspects of the dynamical behaviour.

(@) Non-existence of planar periodic solutions

Consider the averaged equations (14) for the family of systems. It was shown in the
last section that p, = ¢, = 0 is an invariant manifold and on this submanifold the
dynamical behaviour is determined by the two first-order differential equations
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Figure 8. Approximate bifurcation points in the periodic solution branches
and the bifurcation diagrams; a« = 0.513.

governing the variables p, and ¢,. The divergence of the vector field restricted to the
Py = ¢, = 0 submanifold, 0p,/0p, +9¢,/0q;, is —2a which is always of the same sign.
Thus, for the planar system, Bendixon’s criterion (Guckenheimer & Holmes 1983) is
satisfied and limit cycles are ruled out. If there are periodic solutions for the averaged
equations, they only arise in the complete four-dimensional system.

(b) The Hopf solution branch

For o > 0.577, the non-planar constant solutions of the averaged equations are
stable. The only unstable constant solutions are the planar solutions and these arise
due to steady bifurcations. However, for a < 0.577, a portion of the non-planar
branch becomes unstable by Hopf bifurcation. The Hopf bifurcation is supercritical
and a stable limit cycle is created near the fixed point for parameter values for which
the fixed point is unstable. For damping near 0.577, the limit cycle is stable over the
entire detuning interval (£, fy%). It grows from zero amplitude at £, to some finite
size and then shrinks back to the fixed point at #,,. Thus, there is a single connected
periodic branch joining points f,, and f,4. Since the non-planar solutions exist in
symmetric pairs, there is another stable limit cycle. The existence of the symmetric
pair of solutions will be explicitly mentioned only when necessary.

Reduction in damping results in the limit cycles in the Hopf solution branch
undergoing a period-doubling bifurcation. Many period-doublings can arise de-
pending on the value of a. For a = 0.513 the approximate bifurcation points and
the type of solutions found in the various frequency intervals are indicated in figure
8. It is clear that the bifurcation structure is quite rich, although no chaotic motions
arise in the Hopf branch.

(¢) The isolated solution branch

While numerically investigating the Hopf solution branch, a new and different
branch of periodic solutions was discovered. Note that the method used to generate
dynamic solutions was simply the long time integration of the differential equations,
starting with initial conditions close to the unstable non-planar constant solution.
Clearly, long time integration cannot generate unstable solutions. However, several
observations led to the following conjectures. This new branch is not connected to
the Hopf branch and corresponds to a limit cycle as the primary solution. It arises

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

.\

4

N
/3

TaNsactions | HE ROVAL

SOCIETY

4

OF

Downloaded from rsta.royalsocietypublishing.org

14 A. K. Bajaj and J. M. Johnson
(a)
1.0 ~ 1 1.0 4
* 04 0
5 05 =
0.5- 50_2’ 2 U Eﬂ_z }‘ :”|
(. il
‘lH;i‘ ",
0 e —44 \ 0 — —4 lli ll .
-02 0.3 0.8 0 0.4 0.8 —0.2 0.3 0.8 0 04 038
P, frequency p, frequency
b d
1.0-( ) ] 1.0 @
0 | 0
05 = J i‘ q 05 = 1 llm
2_2,| I 2 S =2,
N : g ij.
0 . ; . ; —4 - . ‘: !I| [ 4 —4 "ll ,‘ . | ! |-|!'l! I, ,
-0.2 03 0.8 0 0.4 0.8 —0.2 0.3 0.8 0 0.4 0.8
P, frequency b, frequency

Figure 9. Phase plots and frequency spectra of solutions in the isolated solution branch; a = 0.513.
(a) P, solution, f = 3.40; (b) P, solution, g = 3.45; (¢) P, solution, # = 3.50; (d) chaos, f = 3.60.

due to a global saddle-node bifurcation; that is, a stable and an unstable limit cycle
arise at some low enough damping and the branch exists over a small interval in the
detuning, #. One indication that this branch is different from the Hopf branch is that
the shapes of the solutions on the two branches have distinct characteristics. Also,
the newly discovered branch disappears abruptly as the frequency is varied,
indicative of the type of jump phenomenon that is associated with saddle-node
bifurcations. Finally, the Hopf branch is complete and all its branchings are
accounted for, as shown in figure 8. The conjectures concerning the isolated branch
have since been verified using AUTO (Doedel 1986). As the damping, «, is decreased,
this isolated branch of periodic solutions undergoes a sequence of period-doubling
bifurcations which ultimately leads to the formation of a chaotic attractor. Figure 9
gives a representative set of phase plots along with the spectra for solutions in the
isolated branch for @ = 0.513 and for several values of the detuning, #. This chaotic
attractor is a ‘Rossler’ type attractor, that is, it encircles only one unstable fixed
point.

The approximate bifurcation points in the isolated branch, and its relation with
the Hopf branch, are shown in figure 8. At this level of damping, the isolated branch
is created at £~ 3.35, goes through a sequence of bifurcations, and ultimately
terminates at f ~ 4.10, again, via a saddle-node bifurcation. It is clear from figure 8
that chaotic solutions of the averaged system coexist with other simpler steady-state
stable solutions and that relatively close initial conditions can lead to three very
different steady-state solutions (Johnson & Bajaj 1989).

In addition to phase plane plots and frequency spectra, there are other methods
of characterizing various attractors or steady-state solutions. These include Poincaré
sections, Lyapunov exponents (Benettin et al. 1980; Wolf et al. 1985) and the various
concepts of a dimension (Farmer et al. 1983 ; Parker & Chua 1987). Figure 10 gives
the projection onto the p,q, plane of the Poincard section for the Réssler type
attractor at @ = 0.513, # = 3.6. The surface of section is the hyperplane p, = 0 (only
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Figure 10. Poincaré section of the Rissler type chaotic attractor; a = 0.513, § = 3.6.

trajectories that pass through the hyperplane p, = 0 with p, > 0 are included in the
figure).

Lyapunov exponents (Benettin et al. 1980; Wolf et al. 1985) are a measure of the
mean exponential convergence (or divergence) of nearby trajectories and can be
thought of as generalizations of the eigenvalues associated with fixed points and the
Floquet exponents associated with periodic solutions. In the present work, the
algorithm of Benettin et al. (1980) was used to calculate all the Lyapunov exponents.
The Lyapunov exponents for the Rossler type chaotic attractor shown in figure 10
are found to be (0.019, 0.000, —1.025, —1.046).

Another means of characterizing a chaotic attractor is through the concept of
dimension (Farmer et al. 1983). There are several generalizations of the idea of
dimension that help to classify fractal sets, while yielding the expected result for
simple sets with integer dimension. Included among these are the capacity dimension,
the information dimension, the correlation dimension, and the Lyapunov dimension.
For sets defined by dynamical systems, the following dimension based on Lyapunov
exponents, has been proposed by Kaplan & Yorke (Kaplan & Yorke 1978;
Frederickson et al. 1983). Order the Liyapunov exponents of the trajectory such that
A, = ... = A, then the Lyapunov dimension, Dy, of the corresponding set is defined

as .
Dy, =]+(/\1+"'+/\j)/|A7+1|7 (20)

where j is chosen such that A, + ... +24; >0 but A, + ... +2;,; <0. In terms of the
Lyapunov exponents, j is the ‘expansion’ dimension of the dynamics, i.e. there are
volumes of this dimension which expand. By using the definition (20) and the
exponents already calculated, the chaotic attractor shown in figure 10 is found to
have D}, = 2.018. This implies that a minimum of three state variables are needed to
capture the dynamics of the system for these values of parameters.

(d) Isolated branch cascade

As discussed in the previous section, an isolated branch is created by a saddle-node
bifurcation as o is reduced. The fact that the isolated branch involves unstable limit
cycles makes it difficult to study this branch using long time integration. In recent
years sophisticated algorithms have been developed for numerical bifurcation
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Figure 12. Saddle-node bifurcation sets for the first isolated periodic solutions
branch in the af plane.

analysis of ordinary differential equations. AUTO (Doedel 1986) is one of the
powerful packages available for bifurcation analysis and continuation of solutions,
and it proved to be an invaluable tool in the numerical investigations in this work.
AUTO is able to compute solution branches for both constant and periodic solutions.
In addition, it can help construct ‘saddle-node’ and ‘Hopf’ bifurcation sets in two
parameter space. Not only did it allow the conjectures of §4b concerning the nature
of the isolated branch to be verified, it also made possible the discovery of other
unexpected and interesting phenomena.

Returning to the discussion of the isolated branch, we conjectured that, as o is
reduced, an isolated periodic solutions branch is created by a saddle-node bifurcation.
For even lower values of damping, it was discovered that the Hopf branch ceases to
exist in a small interval of the frequency detuning £. This led to the conjecture that
the unstable limit cycle associated with the isolated branch has merged, via a saddle-
node bifurcation, with the stable limit cycle of the Hopf branch. This merger results
in the creation of a frequency interval where the Hopf branch does not exist. From
another perspective, as a is increased from a low level, the isolated branch pinches
off from the Hopf branch. It is convenient to continue to refer to this branch as the
‘isolated branch’ even though it is not truly isolated at low damping values. Figure
11 qualitatively shows the sequence of bifurcations in regions where the isolated
branch has merged with the Hopf branch. The conjectures made using clues obtained
through long time integration, were verified using AUTO. Figure 12 shows a
partial saddle-node bifurcation set for the isolated solutions in the «f plane where
the saddle-node bifurcations occur. The curve marked ‘creation’ corresponds to the
saddle-node bifurcation that creates the isolated branch. The curve marked ‘merger’
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Figure 13. Maximum value of ¢, for P, solutions; & = 0.507.

corresponds to the saddle-node bifurcation that merges the isolated branch with the
Hopf branch. Thus, the first isolated limit cycles branch exists for damping values
in the interval ca. (0.510-0.518).

By using AUTO and investigating further, it is found that at even lower values of
damping, a second isolated branch is created and then merged with the first isolated
branch in exactly the same manner that the first isolated branch is created and
merged with the Hopf branch. Figure 13 shows, for « = 0.507, the P, solution branch
emanating from the Hopf bifurcation points. Notice that there are now two sets of
turning points in this branch. The first pair corresponds to the creation and merger
of the first isolated branch. The second pair corresponds to the creation and merger
of a second isolated branch. Figure 14 gives the saddle-node bifurcation set
corresponding to this second isolated periodic solutions branch along with the
already shown (figure 13) saddle-node bifurcation points for the first isolated branch.
Notice that there is a range of damping values for which the second isolated branch
is truly isolated, meaning that it has pinched off from the first isolated branch.

The process of creation and merger seems to have a stabilizing effect on the
previously existing branch. Notice that the Hopf branch does not period-double to
infinity in a straightforward manner. It begins to period-double but, in a sense, is
constrained by the first isolated branch. The period-doublings are reversed by the
presence of the unstable P, solution associated with the first isolated branch. The
Hopf branch must reverse period-double all the way back to a P, solution so that it
can merge with the unstable P, branch. Similarly, the second isolated branch forces
the Rossler type chaos arising from the first isolated branch to reverse bifurcate back
to a P, solution so that it can merge with the unstable P, branch associated with the
second isolated branch.

As o is decreased, a cascade of isolated branch creations and mergers occurs.
Each new isolated branch has a period longer than that of the previous one. This
cascade ultimately leads to the formation of a homoclinic orbit, a trajectory that
asymptotically approaches a saddle-type fixed point as t—+ + oo and as ¢t —oo.
Figure 14 shows a plot of the period of the P, solution, T, as a function of the
frequency detuning S for a damping value for which the homoclinic orbit exists. This
figure clearly shows T approaching a vertical asymptote as the cascade ensues.

(e) Homoclinic orbit and Sil’ nikov mechanisms

The very interesting, though complex, sequence of bifurcations and behaviour
described here for the string, were apparently first observed by Knobloch & Weiss
(1983) in a fifth-order model of magnetoconvection. Their system possessed reflection
symmetry very much like the averaged equations (13) being studied here. Their
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Figure 14. Saddle-node bifurcation sets for the first and second isolated periodic solution
branches in the «f plane.

numerical simulations revealed period-doublings followed by undoublings, isolated
oscillatory solution branches, Rdssler type chaotic attractors and the formation of
homoclinic/heteroclinic orbits. They termed these bifurcation structures (e.g. figure
8) as ‘bubbles’. Not only did Funakoshi & Inoue (1988, 1990) find these bubbles in
their numerical simulations of Miles’s equations for surface waves in a cylindrical
container, they also verified their existence in careful and well-controlled experi-
ments. Knobloch & Weiss (1983) argued that this complex behaviour is naturally
associated with the formation of homoclinic orbits when the eigenvalues of the
saddle-point satisfy the approximate Sil’'nikov inequality. The importance of
homoclinic (or heteroclinic) orbits was established by Sil’nikov first for a third-order
system of ordinary differential equations and was later generalized to higher
dimensional systems. The hypotheses of the Sil’'nikov (1970) theorem are : the system
has a homoclinic orbit at a fixed point; the fixed point has one positive real
eigenvalue o,, a complex conjugate pair of eigenvalues, A, = oy +iw, = A, with

negative real parts, and all the other eigenvalues A,, A;, ..., have negative real parts
such that o, >0> 0, > ReA, > .... Sil'nikov then showed that whenever the
eigenvalues satisfy the inequality

0=|oy|/o, <1, w, #0, (21)

the Poincaré return map associated with the homoclinic orbit contains a countably
infinite number of Smale’s horseshoes. Each horseshoe contains an invariant Cantor
set with an uncountable number of aperiodic orbits and a countably infinite number
of periodic orbits of arbitrarily long periods. It also contains a dense orbit, i.e. an
orbit that comes arbitrarily close to each point of the invariant set. The orbits
created are all non-stable. These results are valid in an open interval of the parameter
set containing the parameter value at homoclinicity.

The horseshoes themselves can generate different phenomena. They can generate
very long transients, often referred to as ‘transient’ chaos. The existence of the
horseshoes can also generate a ‘strange attractor’ (Guckenheimer & Holmes 1983),
which itself is an invariant set, and the solution appears to be chaotic for all time.

In case 6 > 1, the system is predicted to have a stable periodic orbit on one side
of the homoclinicity and no recurrent behaviour on the other. The period of the orbit
tends to infinity as the homoclinicity condition is approached.
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Figure 15. Period of the P, solution as a function of detuning; o = 0.5.
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Figure 16. Unstable manifold of upper planar fixed point near the homoclinic orbit;
a=0.5. (a) f=340; (b) p=3.41.

The results of Sil'nikov have to be appropriately modified if the system is
invariant under some symmetry since the existence of a periodic orbit implies the
existence of another orbit which is the image of the first under symmetry
(Glendinning 1984). Furthermore, though the theorem predicts a drastic change in
the behaviour of the system depending on whether § < 1 or § > 1, it has now been
well established (Glendinning & Sparrow 1984 ; Mees & Sparrow 1987) that in a two-
parameter family of system, no spectacular change in the behaviour is observed
numerically as & varies through one. This is because the neighbourhood in which the
theorem is valid shrinks to zero as ¢ approaches one and this in turn suggests that
a stable periodic orbit may be observed when ¢ < 1 or that chaotic behaviour may
be observed when ¢ > 1. :

For the string system, figure 15 has shown the possibility of the existence of a
homoclinic orbit. Further numerical evidence is provided in figure 16 which shows
one branch of the one-dimensional unstable manifold of the upper planar fixed point
for & = 0.5 and for frequencies, S, on either side of the critical value at which the
homoclinic orbit exists. Notice that in both cases the manifold comes back very close
to the fixed point itself but then heads toward opposite non-planar fixed points. The
critical value of frequency f is found to be f = 3.40266..., where the eigenvalues for
the upper planar fixed point are oy = 0.4049, 4, ; = —0.5+1.744i and A, = —1.4049.
Clearly, 6 =0.5/0.4049 = 1.235> 1, and therefore, accounting for the reflection
symmetry, Sil’'nikov’s theorem predicts the existence of periodic orbits on either side
of the homoclinic orbit. Figure 17 shows one of the ‘twin’ limit cycles, at g = 3.40,
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Figure 17. Limit cycles near the homoclinic orbit; & = 0.5. (¢) f = 3.40; (b) f = 3.41.

Figure 18. Multiple stable Lorenz type attractors; a = 0.5, § = 3.5.

just before the formation of the homoclinic orbit as well as the single symmetric limit
cycle, at f = 3.41, encompassing both non-planar fixed points along with the upper
planar fixed point. Thus, the formation of the homoclinic orbit leads to a merger of
the twin limit cycles into one large symmetric limit cycle. Also note (figure 15) that,
for sufficiently large periods, the period 7' of the periodic solution approaches the
vertical asymptote monotonically, as predicted by the theory.

It should be pointed out here that although § > 1 for the homoclinic orbit under
consideration, the Sil'nikov theorem does not preclude much of the bifurcation
structure except for arbitrarily close to the homoclinic bifurcations (Glendinning &
Sparrow 1984). This is borne out by the results presented earlier and our numerical
simulations, which show that the bifurcations sequence from the larger limit cycle
beyond the homoclinicity point is also quite complex. Multiple branches of periodic
solutions are found to exist on this side of the homoclinic orbit. Figure 18 shows two
very different steady-state solutions existing at the same parameter values. The
second branch of solutions undergoes a series of bifurcations that lead to the
formation of a Lorenz type chaotic attractor. Figure 19 is a series of phase plots along
with the spectra for a = 0.500 for various detuning parameters and shows the
formation of the Lorenz type chaotic attractor. The Lyapunov exponents for the
Lorenz type attractor at a = 0.50, f = 3.80 are found to be (0.048, 0.000, —0.967,
—1.043) and the resulting Lyapunov dimension of the attractor is D, = 2.050.

(f) Crisis: chaos quenching
The non-constant steady-state solutions for the averaged equations of the
truncated string system have been explained in sufficient detail for all values of
damping a > 0.50. For each value of damping, the solutions over the relevant
frequency range have been discussed. As the damping is reduced further, it turns out
that the Lorenz type attractors (periodic, chaotic, ete.) abruptly disappear over a
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Tigure 19. Phase plots and frequency spectra for Lorenz type attractors; a = 0.5. (a) f = 3.45;
(b) f=3.46; (c) f = 3.47; (d) = 3.59; (e) f = 3.60; (f) g =3.80.

frequency interval. The only stable solution found in this interval is the lower planar
constant solution. This phenomenon is first observed for a = 0.495 and can only be
explained through the introduction of the idea of a ‘crisis’ or a heteroclinic
bifurcation.

srebogi et al. (1983) have defined the concept of a boundary crisis. It involves a
chaotic attractor coming into contact with its own basin boundary, resulting in the
destruction of the attractor. Streit et al. (1988) found this chaos quenching in a
parametrically excited two-degrees-of-freedom system, that is similar in many ways
to the string system.

The importance of the stable manifold of the middle planar fixed point was
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Figure 20. ‘Crisis’ in averaged equations for the string; o = 0.495. (¢) Lorenz type chaotic

attractor, f = 3.8; (b) chaotic attractor destroyed by a crisis (transient chaos), f = 3.89.

stressed in §3b. It was argued there that this manifold separates the domains of
attraction of the lower and upper planar fixed points. A more general statement can
be made. The stable manifold of the middle planar solution forms the basin boundary
between the attractors on opposite sides. On one side of the manifold almost every
trajectory leads to the stable lower planar fixed point. On the other side almost every
trajectory leads to the Lorenz type chaotic attractor that encircles both unstable
non-planar fixed points as well as the unstable upper planar fixed point.

A crisis occurs when the chaotic attractor comes into contact with its basin
boundary. In the present context, it means that the Lorenz type chaotic attractor
comes into contact with the stable manifold of the middle planar fixed point. Because
of the definition of the stable manifold, a trajectory that contacts the stable manifold
must also contact the fixed point. Thus for dynamical systems, a boundary crisis can
be thought of as an unstable saddle-type fixed point colliding with and destroying a
chaotic attractor. After a crisis has occurred and the attractor destroyed, trajectories
that used to lead to the attractor will remain, for a finite time, in the vicinity where
the attractor existed (ghost of the chaotic attractor) but will eventually lead to the
lower planar fixed point. Figure 20a shows the Lorenz type chaotic attractor and
other relevant fixed points at a detuning value just before the boundary crisis. The
attractor comes very close to the middle planar fixed point. At a slightly higher
detuning, the attractor has grown sufficiently to collide with the saddle-type planar
fixed point. Figure 20b clearly shows an attractor like object but it is only a
transient. After staying around the ghost of the chaotic attractor the trajectory
suddenly appears to collide with the fixed point and quickly converges to the lower
planar stable fixed point. This is an example of the phenomenon termed ‘transient
chaos’ (Parker & Chua 1987) in the literature.

As damping is reduced, the crisis points (i.e. the values of the detuning parameter
f at which the crises occur) move steadily closer to the Hopf bifurcation points 8,
and f,, (e.g. figure 4). Essentially the same sequence of events lead up to the crisis.
The events are, however, compressed into a smaller detuning interval. Thus, as the
damping is lowered, the frequency intervals over which the non-planar complex
motions exist decrease, so much so that, for o = 0.25 (the biggest damping value for
which Miles (1984a) tried numerical integration), the critical frequencies at which
crisis occurs essentially coincide with £, and f,, and practically all initial conditions
lead to the lower planar steady-state constant solution (figure 4).
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Figure 21. Constant amplitude response curve for the pendulum; a = 0.25.
Figure 22. Constant amplitude response curve for the beam; a = 0.4797.

(g) Connections to similar systems

As previously noted, the averaged equations for the string system differ only by
a single nonlinear ratio from the averaged equations for a number of other physical
systems including the spherical pendulum, and a beam. Many of the important
features of the solutions for the string system are found for every member of the
family. Works of Miles (1984b, c), Maewal (1986, 1987), and Funakoshi & Inoue
(1988, 1990) have shown that both Rdossler and Lorenz type chaotic attractors exist
throughout the family.

Typical constant amplitude response curves for the spherical pendulum and the
beam are shown in figures 21 and 22 respectively. The pendulum system is obtained
from equations (14) by setting (4,B) to (0.25, —0.75) while the beam system is
obtained by setting (4, B) to (3.491, —5.958). The values of damping, «, in figures 21
and 22 have been chosen to correspond with a damping value used in Miles (19845)
and Maewal (1986). The same damping will be used later in this section. There are
several important differences between these response curves and the response curves
for the string system. One clear difference is in the nature of nonlinear coefficients,
A and B, such that for the pendulum and the beam system, the backbone curve for
the planar branch and the backbone curve for the non-planar branch bend in
different directions. As a result, when the non-planar solutions become unstable by
Hopf bifurcation, there is an interval in frequency, (f,—/f,«), where there are no
stable constant solutions. In this interval, the only attractors that exist are limit
cycles and chaotic attractors. This makes finding interesting solutions using long
time integration exceedingly easy when contrasted with the case of the string system.
Almost every choice of initial conditions for frequencies in the interval (8,— /)
leads to periodic or chaotic solutions.

A more detailed investigation of Maewal’s beam equations shows that multiple
solution branches also exist for that system. Figure 23 shows a saddle-node
bifurcation set in the af plane corresponding to one of the creation and merger
phenomena for an isolated periodic solution branch for the beam equations. It is
important to note that while for every fixed o there are two saddle-node bifurcation
frequencies at which the branch is created (annihilated) (compare with figure 12 for
the string), only one (the larger of the two) is shown here, Similarly, only one of the
saddle-node bifurcations where merger takes place is shown, though two exist for
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Figure 23. Saddle-node bifurcation set for isolated periodic solutions branch in the af plane
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Figure 24. Merger of ‘twin’ Réssler type chaotic attractors resulting in a Lorenz type attractor
for the beam; o = 0.4797. (a) f = —0.667; (b) f = —0.668.

each «. This is essentially because the plot was generated using AUTO. Although
AUTO is very powerful, it sometime has difficulty following branches when solution
branches become very close. For the beam system, as o approaches 0.84, the creation
and merger bifurcation branches come so close to each other that AUTO fails to be
able to continue them effectively. If they were continued, both branches would have
a turning point near o = 0.84 where they would connect with the lower halves of the
curves not shown. Thus, figure 23 shows that the beam system has an isolated branch
just as the string system does. The fact that the creation and merger branches have
turning points very close to each other indicates that the range of damping « for
which the ‘isolated’ branch is truly isolated is very small.

The merger of the ‘twin’ non-planar attractors in the beam and the pendulum
systems is a little different from that for the string system. For the two attractors to
merge, unstable manifold of the upper planar fixed point must pass through the
stable manifold. This implies that a homoclinic orbit is formed as the solutions
merge. In the string system the Rossler type chaotic attractor reverse bifurcated
back to a limit cycle solution before the merger. This scenario does not arise in either
the beam or the pendulum problem. Figure 24 shows one of the ‘twin’ chaotic
attractors in Maewal’s beam equations just before merger, and the Lorenz type
chaotic attractor created by the merger for a slightly different value of detuning.
Figure 25 shows the corresponding attractors for Miles’s pendulum equations. The
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Figure 25. Merger of ‘twin’ Rossler type chaotic attractors resulting in a Lorenz type attractor
for the pendulum; o = 0.25; (a) f = —0.1485; (b) g = —0.150.
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Figure 26. ‘Crisis’ for the pendulum; a = 0.25. (@) Lorenz type chaotic attractor, f = —0.967;
(b) transient chaos, f = —0.969.

crucial difference in behaviour can be explained in terms of the eigenvalue condition
for the saddle-type fixed point, as specified by the Sil’'nikov theorem. For the
spherical pendulum with 4 = 0.25, B = —0.75 and damping « = 0.25, the homoclinic
orbit is formed at f = —0.1495.... The upper planar fixed point is again a saddle-
focus with eigenvalues o, = 0.8353, A, ; = —0.2510.7815i and A, = —1.3353. Thus
0 =0.25/0.8353 = 0.299 < 1, implying the existence of complex dynamics including
homoclinic bifurcations, horseshoes, and transitions between Rdssler and Lorenz
type chaotic attractors.

Crisis in chaotic attractors also seems to be a phenomenon common to the entire
family of equations. As mentioned earlier, the beam and pendulum equations have
an interval in frequency £, (§,, f14), where there are no stable constant solutions. For
the values of a chosen, the solution branch emanating from the Hopf bifurcation at
P1s quickly gives rise to a chaotic attractor as £ is reduced. This attractor grows
rapidly as the turning point f, is approached (see figures 21 and 22). Reducing £ past
B, the lower and the middle planar fixed points are created. The crisis occurs very
near the turning point in the constant amplitude response curves. Figure 26 ¢ shows
the Lorenz type attractor and relevant fixed points for Miles’s pendulum equations
just prior to the boundary crisis. Figure 26b6 shows the transient behaviour
immediately after the chaotic attractor is destroyed by a crisis. In the case of the
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Figure 27. ‘Crisis’ for the beam; o = 0.4797. (a) Sustained chaotic response, f = —2.19;
(b) transient chaotic response, f = —2.2.

beam equations, the lower and the middle planar fixed points are created in the
interior of the attractor making it difficult to demonstrate the crisis in the phase
space. Thus, figure 27a, b display the crisis using the time response of the amplitude
variable p;.

Having studied the averaged system (14) for various solutions in the last two
sections we now consider the non-autonomous equations governing the motion of the
string. Solutions of the non-autonomous system are studied in light of what is known
about the averaged system

5. Dynamic response of strings

This section discusses the connection between solutions of the averaged equations
and the corresponding solutions of the N-mode truncation of the string equations. An
attempt is made to interpret the consequences of the various solutions of the
averaged equations found in previous sections. For constant and periodic solutions,
the infinite-time theorems in the method of averaging and the integral manifold
theory allow some strong statements to be made concerning the connection between
the two systems. However, at present there are no corresponding theorems that
apply to chaotic solutions of the averaged system. Furthermore, even in the case of
constant and periodic solutions of the averaged equations, the available theorems
make predictions that are valid only for ‘small enough’ é. Because the parameter
value that is small enough is unknown, the averaging results may not be valid for
problems of physical interest. Many of these issues are addressed when discussing the
results of numerical investigations of the truncated string equations.

Direct study of the non-autonomous system confirms the existence of many of the
phenomena observed in the averaged system. The non-autonomous system is found
to exhibit almost periodic motions (i.e. motion on a 2-torus), torus-doubling
bifurcations, multiple solution branches, merger of symmetric tori, chaotic
attractors, and chaos quenching or crisis.

(a) Review of theorems in averaging

In the interest of completeness and for ease in subsequent discussions, the essential
steps in the development of the averaged equations for the N-mode system given in
§2 are, again, spelled out below.

An N-mode truncation of the btnng system is given in equations (6). These
equations are transformed into the ‘standard form’, suitable for the application of
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the method of averaging, by the van der Pol transformations (7), resulting in the
equations (8). The averaged equations (9) are obtained from equations (8) by using
a near-identity transformation, and then neglecting or dropping terms of O(€?) and
higher.

In the following, the basic results relating solutions of the averaged system (9) to
those of the system (8) are discussed after presenting the essential theorems (Hale
1963, 1969).

(1) Infinite-time averaging theorem

Suppose that the averaged system (9) has a hyperbolic constant solution (i.e. a
solution with eigenvalues away from the imaginary axis), (4%, B%), n=1,2,...,N.
Then, for each é,0 < é < ¢f and some €f < 1, there is a 2n-periodic solution, (z‘fn (14, €),
B&(Tl,é)), n=1,2,...,N, of equations (8) which lies near (4%, B%), n = 1,2,...,N and
A, (1,,€)— A5 + | B, (1,,é)— BS|| >0 is é 0. The stability of the solution (4,,(7,,é),
B, (7,,€)), n=1,2,...,N, is the same as that of the constant solution (4%, BY), n =
1,2,...,N with respect to the averaged system.

The original oscillators (6) then clearly have a 2n-periodic solution z, (7,) which is

approximated by
Z,(1,) = A% cosnt, + B sinnt, +0(E), n=1,2,...,N. (22)

(i) Integral manifold theorem

Suppose that the averaged system (9) has a hyperbolic limit cycle or steady-state
periodic solution (i.e. a solution with (4N —1) Floquet multipliers away from the unit
circle),

A, = A*0), B,=B*@®), n=12,..N, (23)

where A* and B* are 2n-periodic in 6 and 6 = éQr, for some Q > 0. Then, for each ¢,
0 < € <ef and some €f < 1, the solution of equations (8) is of the form

A, =A,0,7,,é), B,=B,0,7,6), n=1,2.N. (24)

The solution (24) lies on an integral manifold S which is a surface 2n-periodic in 6 and
2n-periodic in 7,. The manifold § lies close to the cylinder {(A*(0), BX0)), n =1,2,
..., N} x 7, and coincides with it as é - 0. The stability of the integral manifold S is the
same as that of the limit cycle of the averaged system.

The motion of the coupled oscillators (6), for a parameter set at which the averaged
equations have a limit cycle, is then

2,(0,7,,6) = A,(0,7,,6) cosnt, + B, (0,7,,é)sinnt,, n=1,2,.. N (25)

The motion is amplitude modulated with basic period 2n. The period of modulations
is determined by the slow timescale and, for small é, is very large, compared with 2.
The modulations are, therefore, very slow in the natural time 7,.

Thus, the constant and periodic solutions of the averaged equations (9) provide
a first-order approximation to 2m-periodic and almost periodic solutions of the
oscillators (6). These approximations are valid for small enough é.

In addition to results relating the constant and periodic steady-state motions of
the averaged equations, some other results relate transient solutions of the averaged
equations lying on the stable and unstable manifolds of the steady-state solutions to
the corresponding solutions for the original equations. We do not state them here and
the interested reader can consult Guckenheimer & Holmes (1983).
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(iil) Interpretation of averaging results for the string

The averaged equations for the N-mode truncation of the string equations were
given explicitly in §2. There it was shown that only the modal amplitudes (A,, B,)
corresponding to the mode in resonance may have nonzero solutions. All the other
modal amplitudes (4,,B,), n=1,2,...,r—1,r+1,...,N decay exponentially and
their only steady-state solution is the zero solution. Sections 3 and 4 were devoted
to a detailed investigation of steady-state constant, periodic as well as aperiodic
solutions of the averaged equations for the modal amplitudes A4, and B, as a function
of the frequency of excitation f and the damping «.

The averaged equations for the resonant mode have been found to possess ‘planar’
as well as ‘non-planar’ constant solutions. The N-mode truncation of the string then
has a corresponding periodic solution

z, = A% cosrr;+ Blsinrr, + O(é), 1

(26)
2, =0(E), n=1,2,...,r—1,r+1, ...,N.J

Thus the primary motion of the string is in the resonantly excited mode, is periodic
with period 27, and is, essentially, planar (i.e. in the plane of forcing) or non-planar,
as predicted by the averaging analysis.

Similar statements can be made when the averaged equations exhibit limit cycle
solutions. The truncated string equations then have an amplitude modulated motion
which is essentially in the mode directly excited. The motion is given by

7, = A* (0) cosrr, + B¥(0) sinrr, + O(é), 1

27)
2, = 0@, n=1,2..,r—i,r+1,....N.]

In fact, due to the nature of equations (6), it is easy to see that z. =0, n = 1,2,
wor—1,74+1,...,N, is always a solution. Thus, the non-resonantly excited modes
remain identically zero if started with zero initial conditions and the motion is
completely restricted to the rth mode. This observation will be used in the
subsequent investigations of the non-autonomous string system.

(iv) Unresolved aspects

Averaging theory and the theory of integral manifolds only partly answer the
questions concerning the connection between the solutions of the averaged system
and those of the non-autonomous system. One unresolved aspect involves chaotic
attractors in the averaged system. At present, there are no infinite-time results
relating aperiodic, asymptotic (in time) behaviour in the averaged equations to the
dynamics of the non-autonomous system. Even though there is no mathematical
justification for assuming that a chaotic attractor in the averaged system has a
chaotic counterpart for the non-autonomous system, one has the mystical hope that
there is such a connection. Heuristically, one could argue that if the chaotic attractor
of the averaged system is sufficiently hyperbolic (perhaps defined though the use of
Lyapunov exponents) a corresponding chaotic attractor should exist in the non-
autonomous system for small enough é.

Another question left unanswered in the averaging theory is its range of
applicability. The relevant theorems predict the existence of some €* such that the
results are valid for all é, € < é*. Very few analytical investigations (Schapiro &
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Resonant motion in stretched strings 29

Sethna 1977) exist on the estimates of small parameter é* for which the solutions of
the averaged equations (9) have quantitative as well as qualitative correspondence
with the solutions of the original system.

To at least partly address the aforementioned questions, the O(€%) terms, which
were neglected to obtain the averaged equations, can be viewed as small 2r-periodic
perturbations to the averaged system. The size of é determines the strength of these
perturbations. The persistence of a solution of the averaged equations in the presence
of periodic perturbations depends on the strength of the perturbations as well as on
the stability (or, more generally, the hyperbolicity) of the solution. This viewpoint
is followed through in the discussions in the next section (also see Bajaj & Johnson
1990; Bajaj & Tousi 1990).

(b) Averaging revisited
The averaged equations can be interpreted in a slightly different manner. The non-

autonomous system in standard form (8) can also be written as an extended
autonomous system

A, =éfio(A,B)+é*f1, (A, B,Q,é),
B, =éf,0(A,B)+é*f,,(A,B,2,é), n=1,2,...N, Q =1, (28)

where f;;, ¢ = 1, 2 are 2n-periodic in . The averaged system is then the uncoupled set
of equations

A, =éf,,(A,B), B,=6éf,(A.B), n=1,2..N & =1. (29)

Clearly, limit cycle solutions of the first two sets of equations in (29) imply a 2-torus
for the system (29) and the integral manifold theorem states that the system (28) also
has a 2-torus (the integral manifold S) at least for small enough €. The actual nature
of motion on the torus is not specified. The invariant torus of system (28) exists if the
torus of system (29) is sufficiently hyperbolic. The occurrence of small denominators
requires the imposition of some strong conditions of irrationality between the
frequencies involved in the torus to ensure the existence of quasi-periodic behaviour
on the torus (Looss 1979). As a suitable parameter in the system is varied, these
conditions may be violated resulting in frequency locking, that is, periodic orbits on
the torus. The parameter variation may also produce conditions which lead to the
destruction of the torus and to chaotic behaviour, as discussed by Aronson et al.
(1982) as well as Kaneko (1984).

In recent years many investigators, including Miles (1984 a, b, c), Maewal (1986,
1987), Johnson & Bajaj (1989) and Tousi & Bajaj (1985), have found cascades of
period-doubling bifurcations (or torus-doubling bifurcations, if the averaged
equations are cast in the form of equations (29)) leading to chaos in the averaged
system. This implies a series of torus-doubling bifurcations in the corresponding non-
autonomous systems. However, at the bifurcation point, the torus for system (29) is
non-hyperbolic and therefore the integral manifold theory does not apply. In fact,
the small parameter e¥, for which the theorem is valid, quickly decreases as the
parameter of interest moves closer to its critical value. Various numerical
experiments on systems of this type show (Kaneko 1984 ; Arneodo et al. 1983) that
there is an interruption of the cascade of torus-doubling before the chaotic behaviour
arises. Coullet has related this to the ‘instability of the scenario of torus-doubling’.
He points out that a bifurcation of a torus is by itself unstable. The existence of a
clean transition requires rather restrictive conditions (Chenciner & Iooss 1979) and
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Figure 28. Response curve for 2n-periodic solutions of the string; o = 0.513. (¢) Prediction by
averaging; (b) direct solutions, € = 0.1; (c¢) direct solutions, ¢ = 0.01.

when these are not satisfied a ‘fuzzy bifurcation’ occurs. The parameter domain of
fuzziness extends on both sides of the ‘clean’ transition point when the invariant tori
are not sufficiently hyperbolic. As a consequence, the last steps in the torus-doubling
cascade to chaos disappear in this fuzziness. As the small parameter é is decreased,
the number of steps in the cascade, before it is interrupted, increase and Kaneko
(1984) has investigated the scaling behaviour numerically for some coupled maps. He
has also studied the mechanisms of this interruption from the viewpoints of the
renormalization group approach, the fractalization of torus and the intermittent-like
transition.

From the above discussion it is clear that, at least for small enough ¢, the period-
doubling bifurcation in the averaged equations (29) persists for the original system
(28). The cascade of torus-doublings for the original equations is, however,
interrupted before the chaotic behaviour arises. Furthermore, because of the fuzzy
nature of the transition points, the parameter range for the existence of a certain
kind of steady-state behaviour is expected to be different in the two cases. These
various observations are completely borne out by the results for the truncated string
system.

(¢) Constant amplitude or periodic solutions of the string

Rather than appealing to the method of averaging to find approximations to
periodic solutions of the N-mode truncation (equations (6)), and also in order to
evaluate some of the issues discussed above, solutions to equations (6) are now
directly investigated. A single-mode approximation (N = 1) is used in these studies
for the case when the forcing frequency is near the lowest linear natural frequency
(r =1). Later some comments about the one-mode truncation will be made.

A branch continuation algorithm (Keller 1977) was used to find 2zn-periodic
solution branches of the system (6) as a function of g for fixed «, ¢, and s. The
emphasis was on the values of damping o for which the averaged equations possess
limit cycle solutions. Figure 28 a—¢ shows the constant amplitude response curves for
parameters o = 0.513, and s = 0.1. Here £ represents the norm of the 2r-periodic
solution defined by

21

=2—n0

E (zr.zr+z'r.zr) dTl'

Both the planar and the non-planar periodic solution branches are identified. The
response curves of the non-autonomous system are sufficiently similar to those of the
averaged equations that the same notation is used to describe the bifurcation points
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Resonant motion in stretched strings 31

of the two systems. The bifurcation points for the non-autonomous system are
distinguished from those for the averaged system by an overbar. The stability of
the periodic solutions is determined by the eigenvalues (Floquet multipliers) of the
associated monodromy matrix. The unstable planar solution branch between the
turning points arises due to one Floquet multiplier leaving the unit circle through
+1. The same is true for the bifurcation points where the planar branch becomes
unstable and gives rise to 2n-periodic non-planar solutions. The instability in the
non-planar solution branch arises at g, and f,, due to a complex-conjugate pair of
Floquet multipliers leaving the unit circle.

The first curve (figure 28a) is the one predicted by the averaged equations. The
second (figure 28b6) and the third (figure 28¢) response curves were obtained directly
from the non-autonomous system (6) with ¢ = 0.1, and ¢ = 0.01 respectively. The
correspondence between the solutions obtained from the non-autonomous system
and those from the averaged system is quite good. As is expected, the correspondence
improves as ¢ is reduced.

Although the response curves shown in figure 28 agree qualitatively, there are
some quantitative differences. In particular, the bifurcation points for the non-
autonomous system are somewhat shifted from the bifurcation points obtained using
the averaged equations. This means that even though, at a particular value of ¢, the
averaged equations (13) may predict a stable 2r-periodic solution of the truncated
string equations (6), the truncated string equations may in fact exhibit a stable
almost periodic solution (i.e. a stable torus solution). It is important to recognize that
the asymptotic method of averaging makes predictions that are valid provided that
¢ is sufficiently small. The range of validity in € shrinks rapidly as bifurcation points
are approached because solutions become non-hyperbolic at bifurcation points.
Numerical evidence seems to suggest (Bajaj & Johnson 1990) that the difference
between the bifurcation points behaves like O(é%) as é > 0. In fact for sufficiently small
é, it is found that, qualitatively, the response curves and the bifurcation set for a
(., €) pair are similar to another (e, €) pair with lower damping and higher é. Thus,
lowering damping o very much acts like increasing the forcing amplitude é.

(d) Almost periodic and aperiodic solutions: € = 0.1, investigation

In parameter regions where the averaged equations have limit cycle solutions, the
truncated string equations are expected to exhibit amplitude modulated motions.
These equations (6) were integrated for ¢ = 0.1, and various values of damping « and
detuning £ until a steady-state was reached. A particular value of ¢ was chosen to
facilitate the comparison between the actual solutions and those predicted by the
averaging analysis.

At ¢ = 0.1, there are many similarities between the various steady-state solutions
of the averaged system and those for the truncated string system. Major differences,
however, also exist. A previous section demonstrated that as far as the constant
amplitude solutions are concerned, the differences seem to be quantitative rather
than qualitative except close to bifurcation points. For more complex solutions,
however, there are differences that result in qualitative changes in the bifurcation
sequence.

For a = 0.55, the averaged equations only have a stable limit cycle branch joining
the Hopf bifurcation points (f4, fax) = (2.8675,3.8059). The truncated string
equations are found to possess a stable 2-torus (or almost periodic motion) except
that it exists over the frequency interval (£, fox) = (2.6287,4.1809). Clearly, over
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the frequency intervals (£, fix) and (Byy. Box) the predictions of averaging are
qualitatively different from the actual response of the system. This is consistent with
the observations previously made for solutions near transition points. In the present
case, the O(é%) terms dropped in the averaging analysis have destabilized the 2m-
periodic solution into a 2-torus.

As the damping is lowered, many more types of solutions and bifurcations such as
torus-doublings, homoclinicity, chaotic attractors, ete., arise. Rather than creating
a catalogue of differences, we here concentrate on some general features of the
response. These are essentially dictated by the bifurcation sequences as a function of
the system parameters.

One qualitative difference in the bifurcation sequence is a consequence of the
movement of bifurcation points. As previously shown, the extent to which
bifurcation points are shifted increases as € is increased. It is reasonable to expect
that different types of bifurcations are affected to different extents by the inclusion
of the perturbation terms. One type of bifurcation may be favoured while another
may be less favoured, that is, the O(é%) perturbations may stabilize some solutions
and destabilize others. Thus, it is conceivable that this unequal shifting or sensitivity
to perturbations may even alter the bifurcation sequence.

Evidence of this kind of behaviour can be found in the truncated string example.
Recall that in the averaged system, periodic solutions in the isolated branch period-
doubled ad infinitum to form a Rdossler type chaotic attractor. Then, as o was
reduced, a homoclinic orbit was formed. For ¢ = 0.1, however, the truncated string
equations have a different sequence of bifurcations. No Rdssler type chaotic
attractor is observed, rather the isolated branch has only one torus-doubling before
the formation of a homoclinic orbit (of the Poincaré map). A homoclinic orbit of the
Poincaré map implies a torus with an infinite winding number. The homoclinic orbit
gives rise to a symmetric stable torus which, after several bifurcations, results in the
formation of a Lorenz type chaotic attractor.

(1) a = 0.513 comparison

To study the connection between the solutions of the averaged system and those
for the non-autonomous system further, the truncated string system is investigated
as a function of 4 for a value of damping at which the averaged system possesses a
chaotic attractor, namely, « = 0.513. As discussed earlier, bifurcation points for the
truncated string equations are shifted when compared with those for the averaged
system. This shifting is not only in £ but in a as well, as is clearly demonstrated by
the fact that this value of damping (a = 0.513) yields a bifurcation sequence in the
truncated string equations similar to the bifurcation sequence in the average system
with a lower damping value (perhaps o = 0.5, see figure 11).

The Hopf bifurcation from the non-planar 2n-periodic solution at fx gives rise to
an almost periodic or 2-torus solution. Figure 29 shows for f = 2.8 the time history
of the non-planar component as well as the Poincaré section of the solution. The
Poincaré section also shows the relevant fixed point of the Poincaré map identifying
the unstable 2n-periodic solution. This torus becomes unstable and torus-doubles as
shown in figure 30 (8 = 2.9). Just as the Hopf branch for the averaged equations
undergoes a saddle-node bifurcation and merges with an isolated branch, the 2-torus
solution branch arising in the truncated string equations due to Hopf bifurcation
from the non-planar 2zn-periodic solution appears to undergo a similar saddle-node
bifurcation. This is evident from the fact that there is an interval in # where the Hopf
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Figure 29. Almost periodic response (2-torus) for the string; a = 0.513, f = 2.8, ¢ = 0.1.

(@) Time response, (b) Poincaré section.
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Figure 30. Almost periodic response (torus-doubled) for the string; a = 0.513, # = 2.9, ¢ = 0.1.
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Figure 31. Multiple tori; a = 0.513, # = 3.0, ¢ = 0.1. (@) Hopf branch, (b) isolated branch.

branch ceases to exist. Also, there is an interval where multiple tori exist. Figure 31
shows Poincaré sections of two different tori at the same frequency (f = 3.0). The
resemblance of the Poincaré sections of the solutions in the two branches to those of
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Figure 32. Torus-doubled solution in the isolated branch: a = 0.513, # = 3.08, ¢ = 0.1.
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Figure 33. Poincaré sections of attractors leading to the Lorenz type attractor via homoclinic

orbit; o = 0.513, ¢ = 0.1. (@) = 3.16, (b) f = 3.17. (¢) f = 3.3, (d) B = 3.31, (¢) § = 3.315.

the solutions of the averaged system on the Hopf (fig. 4 in Johnson & Bajaj 1989) and
isolated branches (figure 9a) is quite remarkable. It may be important to point out
that for o = 0.513, the two solution branches in the averaged system were isolated,
whereas the branches for the truncated string system are already merged.

Recall that the isolated branch of the averaged system undergoes a cascade of
period-doubling bifurcations as the frequency £ is varied, resulting in the creation of
a Rossler type chaotic attractor. The twin chaotic attractors then reverse bifurcate
back to limit cycles which merge to form a homoclinic orbit. The homoclinic orbit
finally gives rise to a single symmetric limit cycle that after a series of bifurcations
results in the formation of a Lorenz type chaotic attractor. At this value of ¢ and s,
the non-autonomous system does not possess a Rossler type chaotic attractor.
Instead, the 2-torus in the isolated branch only torus-doubles once before the
formation of a homoclinic orbit (of the Poincaré map). Figure 32 shows the Poincard
section of the T, (i.e. torus-doubled) solution for g = 3.08. As is the case in the
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Figure 34. Section of Lorenz type chaotic attractor; a = 0.513, f = 3.4, ¢ = 0.1.
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Figure 35. “Crisis’ in truncated string equations: o = 0.5, ¢ = 0.1. (@) Poincaré section of the
chaotic attractor, f = 4.5; (b) Poincaré section displaying transient chaos, f = 4.49.

averaged system, the homoclinic orbit results from the merger of its symmetric twins
and gives rise to a larger 2-torus solution encompassing both non-planar fixed points.
Figure 33 shows a sequence of Poincaré sections leading to the merger of the twin
tori. This larger solution, after a few torus-doubling bifurcations, leads to the
formation of a Lorenz type chaotic attractor. Figure 34 shows, at f = 3.4, the chaotic
attractor that is formed after the torus is destroyed. The Lyapunov exponents for
this chaotic attractor also can be computed and are (0.003, 0, 0, —0.066, —0.069),
which corresponds to Dy, = 3.045. Thus, there is chaotic dynamics present in the one-
mode truncation of the string and, at least for e = 0.1, the chaotic attractor arises due
to torus breakdown via the process of torus-doubling bifurcations.
(i1) Crisis

The chaotic attractor in the averaged equations was shown to undergo a boundary
“erisis’, in which the attractor touches its basin boundary and is destroyed. For
e = 0.1, s = 0.1, the non-autonomous system also exhibits a crisis. Figure 35a shows
for f = 4.5 the Poincaré section of a Lorenz type chaotic attractor along with the
relevant fixed points (i.e. the 2n-periodic solutions) of the Poincaré map just before
the crisis. Figure 35b shows for only slightly different g, f = 4.49, the Poincaré
section of the transient chaos once the chaotic attractor has been destroyed. In this
figure, the dot size has been enlarged to highlight the points that spiral down toward
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Figure 36. Time response of the out-of-plane component displaying transient chaos; a = 0.5,
p =449 ¢=0.1.
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Figure 37. Periodic non-planar response of whirling motion of the string; a =0.513, = 2.4,
e=0.1.

Figure 38. Non-symmetric almost periodic response of the string; a = 0.513, # = 3.0, ¢ = 0.1.
Figure 39. Symmetric almost periodic response of the string; o = 0.513, # = 3.3, ¢ = 0.1.

the lower planar fixed point. Figure 36 shows the corresponding time history of the
non-planar component. This figure demonstrates the dramatic effect that a crisis has
on the dynamics of the system.

(iii) Physical interpretation of solutions

Before closing this discussion, it may be of interest to visualize the physical motion
of the string corresponding to the various attractors. Figures 37-39 show the
response in the z;,2z;, plane for =24 and 3.3 respectively. This plane can be
thought of as viewing along the axis of the string as it vibrates. At f = 2.4, the string
undergoes a non-planar 2n-periodic motion which is the well-known whirling or
ballooning motion of the string. Owing to a change in excitation frequency, this
periodic motion becomes unstable and gives rise to the almost periodic motion in
figure 38 for # = 3.0. The ballooning motion now precesses or drifts periodically at
a slow rate, i.e. the spatial orientations as well as the magnitudes of the semi major
and minor axes oscillate slowly in time. Note that the two motions are not symmetric
about the plane of excitation and exist with their symmetric counterparts. A further
change in the frequency of excitation can result in the collision of the two precessing
motions to give the symmetric precessing motion of figure 39. This motion is the one
which ultimately breaks down into chaos.
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Figure 40. Poincaré section of the Rossler type T, solution; « = 0.513, § = 3.24, ¢ = 0.025.

Figure 41. Poincaré section of the Rdssler type chaotic attractor; « = 0.513, g = 3.26,
e = 0.025.

(e) Smaller values of e¢: Rdssler type chaos

The previous subsections detailed some of the similarities and differences between
the solutions of the averaged system and those of the non-autonomous system for a
particular value of ¢ (= 0.1). One particularly striking difference was the absence of
multiple torus-doubling bifurcations in the isolated branch before the merger of the
symmetric twins and the creation of the larger symmetric torus. It is clear from
earlier discussions that as € is reduced more torus-doubling bifurcations should be
observed in this branch. This indeed is the case. Figure 40 shows a Poincaré section
of the Rossler type T, solution for ¢ = 0.025, # = 3.24, and a = 0.513. Such solutions
did not exist at ¢ = 0.1. At ¢ = 0.025 a Rossler type chaotic attractor is also found in
the non-autonomous system. Figure 41 shows a Poincaré section of the Rossler type
chaotic attractor for ¢ = 0.025, # = 3.26, and « = 0.513.

At this point, let us make a few remarks about keeping only one mode (N = 1) in
(6) for the investigations with the truncated string equations. We first recall that the
nonlinear coupling in the various modal amplitudes z; is such that the modes not
directly excited remain at rest if started with zero initial conditions. Thus, the four-
dimensional submanifold of non-zero (z,, Z,) is an integral manifold of the system and
the dynamical behaviour presented in this section takes place on that manifold. If
small initial conditions away from the integral manifold are given, their effects can
be investigated by considering the non-autonomous modal amplitude equations (6)
and this has been termed the problem of ‘local stability of modes at rest’ in the
literature (Henry & Tobias 1961 ; Ariaratnam 1987; Hsieh & Shaw 1990). When the
rth mode, which is the directly excited mode, undergoes periodic oscillations, the
equations for inactive modes have periodic coefficients leading to the well-known
Mathieu—Hill type equations. Linear stability can then be investigated using the
standard Floquet theory and the so called ‘strutt’ diagrams. Since the natural
frequencies and the parametric excitation are not in ‘principal parametric
resonance’, one can easily show that even for small damping, the modes at rest are
asymptotically stable. The situation is more complex when the active mode has
almost periodic motion (Davis & Rosenblat 1980). For the case of chaotic motions of
the active mode, no direct results regarding the stability of zero solutions of modes
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at rest are available. The chaotic input can be perhaps treated as a stochastic signal
with certain statistical properties and then concepts from the literature on ‘almost-
sure-stability ’ can be used to study the response properties. This is a very interesting
area that needs to be investigated. Hsieh & Shaw (1990) have made some initial
attempts in this direction.

6. Summary and conclusions

This work studied an N-mode truncation of the equations governing the resonantly
forced nonlinear motions of a stretched string. The external forcing is restricted to
a plane, and is harmonic with the frequency near a linear natural frequency of the
string. The method of averaging is used to investigate the weakly nonlinear
dynamics. Using the amplitude equations it is shown that to O(€), only the
resonantly forced mode has non-zero amplitude.

Steady-state solutions of the averaged equations are studied in considerable detail.
Both planar (i.e. lying in the plane of forcing) and non-planar solutions are studied
and amplitude—frequency curves are determined. For small enough damping, it is
found that the solutions in the non-planar branch become unstable via a Hopf
bifurcation. This branch of limit cycles exhibits several period-doubling bifurcations,
but does not directly result in the formation of a chaotic attractor.

At lower values of damping, other branches of periodic solutions are discovered
and explored. An isolated branch of periodic solutions is created at some frequency,
via a saddle-node bifurcation. The genesis of this branch involves the simultaneous
creation of a stable periodic solution branch and an unstable periodic solution
branch. As damping is decreased further, these branches undergo various
bifurcations. The unstable isolated branch eventually merges with the stable Hopf
branch via a saddle-node bifurcation, whereas solutions in the stable isolated branch
undergo a cascade of period-doubling bifurcations that results in the formation of a
Rossler type chaotic attractor. It is discovered that as damping is reduced further,
a series of isolated branches are created and merged into the extended Hopf branch.
Each new isolated branch is found to have a period longer than the previously
created branch. The process of isolated branch creation and merger culminates in the
formation of a homoclinic orbit originating from a saddle-focus. The eigenvalue
structure of the saddle-focus and Sil’'nikov’s theorem are used to interpret the
bifurcation behaviour observed in numerical simulations. Away from the homo-
clinicity frequency, a series of bifurcations result in the formation of a Lorenz type
chaotic attractor.

At still lower values of damping, an interval in frequency is discovered where the
Lorenz type attractor abruptly disappears. This phenomena is explained through the
concept of a boundary crisis. The crisis frequencies quickly approach the Hopf
bifurcation frequencies as a is decreased. Even though the bifurcations take place
over an increasingly small interval of frequency detuning £, the bifurcation sequence
remains essentially unchanged.

The results from the investigations with the averaged system are interpreted for
the truncated string system using results from the averaging theory. Extensive
numerical investigations show that for the single-mode truncation of the non-
autonomous system, there seems to be a correspondence even between chaotic
solutions of the averaged system and those of the original system. Counterparts to
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all phenomena found in the averaged system are found in the non-autonomous
system.

Thus, the averaged equations provide a good explanation of experimental
observations of previous investigators, including jump phenomena and non-planar
whirling or ballooning. The averaged equations also predict the existence of stable
motions of the string including almost periodic and aperiodic non-planar motions. A
careful application of the method of averaging provides many insights into the
behaviour of the non-autonomous system. The correspondence between the solutions
of the averaged system and those of the non-autonomous system is quite good.

We would like to point out that there has been considerable recent interest in
chaotic vibrations of strings. Latest works include the theses of Tufillaro (1990) and
O’Reilly (1990). Although each of these, and the present work, consider the problem
of forced vibrations of the string in the context of one-degree and two-degrees of
freedom models, the methods used are markedly different. The work of O’Reilly (also
see O’Reilly & Holmes 1991) is more closely related to the present study except that
it uses techniques from global dynamics, and investigates the predicts the complexity
of bifurcations and motions in terms of the completely integrable hamiltonian
system obtained when the damping and the forcing tend to zero.

The authors thank Dr N. F. Tufillaro for the copy of his thesis, and Professor P. Holmes and Dr
0. M. O’Reilly for copies of the preprints. The authors also thank the referees for thoughtful
comments and suggestions that have improved the presentation.
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